References

- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Gould, R. O., McNab, H. & Walkinshaw, M. D. (1983). Acta Cryst. C39, 1097-1101.
- Jones, A. J., McNab, H. & Hanisch, P. (1978). Aust. J. Chem. 31, 1005-1010.
- McNab, H. (1978). J. Chem. Soc. Perkin Trans. 1, pp. 1023-1029.
- Nagel, M. & Allmann, R. (1981). Cryst. Struct. Commun. 10, 905-908.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1992). SHELXTL/PC User's Manual. Release 4.3. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.

Comment

The title compound (I) contains a 1,4-substituted cyclohexane ring and a 3,4-substituted piperidine ring. As such substituted rings give rise to *cis* and *trans* isomers and, moreover, 3,4-substituted piperidines are chiral, eight isomers are possible. The geometry of the four racemates was derived from the NMR spectra of the benzyl esters (Stokbroekx *et al.*, 1986). Here we report the structure of levocabastine, the most potent histamine H_1 antagonist of the series.

Acta Cryst. (1994). C50, 1501-1503

Structure and Absolute

Configuration of (-)-(3*S*,4*R*)-4-Carboxy-1-[4-cyano-4-(4-fluorophenyl)cyclohexyl]-3-methyl-4-phenylpiperidinium Bromide (Levocabastine Hydrobromide)†

N. M. BLATON, O. M. PEETERS AND C. J. DE RANTER

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

(Received 4 February 1994; accepted 14 March 1994)

Abstract

Levocabastine is a potent H_1 antihistamine agent. Both the piperidine and cyclohexane rings in the title compound, $C_{26}H_{30}FN_2O_2^+.Br^-$, have conformations close to an ideal chair. The piperidine and fluorophenyl rings are positioned equatorially on the cyclohexane ring, while the cyano group is oriented axially, resulting in a *cis* configuration. The phenyl moiety on the piperidine ring is in an equatorial orientation while the methyl and carboxyl substituents are placed axially. This corresponds to a *trans* configuration. The molecules are linked together in the **c** direction by $N-H\cdots Br\cdots H-O$ hydrogen bonds.

The absolute configuration is (3S,4R). The bond distances and angles lie within the expected ranges. The cyclohexane and piperidine rings have confromations close to an ideal chair. The fluorophenyl and phenyl substituents are placed equatorially, while the cyano, methyl and carboxyl groups are oriented axially. The conformation of the cyclohexane-piperidine connection is staggered. The carboxyl substituent is almost perpendicular to the phenyl ring $[80.2(2)^{\circ}]$, while the fluorophenyl moiety is nearly coplanar with it $[9.8 (2)^{\circ}]$. The molecules are linked together by N15-H15...Br [N15···Br 3.248 (4), H15···Br 2.272 Å, N15-H15...Br 145.7°] and O23ⁱ—H23ⁱ...Br $[O23^{i}...Br$ 3.118 (4), H23ⁱ···Br 2.070 Å, O23ⁱ—H23ⁱ···Br 148.4°; symmetry code: (i) $\frac{3}{2} - x$, -y, $\frac{1}{2} + z$] hydrogen bonds, forming infinite chains in the c direction.

Fig. 1. PLUTO (Motherwell & Clegg, 1978) diagram of the molecule showing the atomic numbering scheme.

Experimental

Crystal data $C_{26}H_{30}FN_2O_2^+.Br^ M_r = 501.44$

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å

[†] Internal code of the Janssen Research Foundation: R53474.

C₂₆H₃₀FN₂O₂⁺.Br⁻

Orthorhombic $P2_12_12_1$ a = 6.592 (1) Å	Cell parameters from 24 reflections $\theta = 20-25^{\circ}$	C27 C28 C29	0.723 (1) 0.895 (1) 1.074 (1)	-0.2453 -0.2804 -0.2534	(3) 0.3 (3) 0.3 (3) 0.3 (3) 0.3	3599 (4) 3615 (5) 3797 (5)	0.077 (3) 0.090 (3) 0.102 (4)
b = 21.621 (4) Å c = 16.894 (4) Å	$\mu = 2.593 \text{ mm}^{-1}$ T = 293 K	C30 Tabl	1.0832 (9) e. 2. Selec	-0.1901 rted geom	(3) 0.: etric para	3997 (4) meters (Å	0.086 (3) °)
V = 2407.8 (9) Å ³ Z = 4	Plate $0.5 \times 0.3 \times 0.1 \text{ mm}$	FC1 C1C2 C1C6		1.357 (5) 1.35 (1) 1.34 (1)	N15-C16 N15-C20		1.512 (5) 1.512 (6)
$D_x = 1.383 \text{ Mg m}^2$	Colouriess	C2C3 C3C4		1.34 (1) 1.415 (9) 1.385 (7)	C17-C18 C17-C18 C17-C21		1.528 (6) 1.539 (6) 1.531 (6)
Syntex P2 ₁ four-circle diffractometer	$R_{\rm int} = 0.0129$ $\theta_{\rm max} = 54.97^{\circ}$	C4C7 C5C6 C7C8		1.529 (6) 1.378 (8) 1.563 (6)	C18-C19 C18-C22 C18-C25 C19-C20		1.538 (6) 1.543 (7) 1.548 (6) 1.520 (6)
 ω/2θ scans Absorption correction: none 3414 measured reflections 3002 independent reflections 	$h = 0 \rightarrow 7$ $k = 0 \rightarrow 22$ $l = -17 \rightarrow 17$ 3 standard reflections monitored every 50	C7-C12 C7-C13 C8-C9		1.505 (0) 1.543 (6) 1.482 (7) 1.538 (6)	C19 - C20 C22 - O23 C22 - O24 C25 - C26		1.320 (6) 1.302 (6) 1.190 (7)
		C9-C10 C10-C11 C10-N15		1.535 (6) 1.520 (6) 1.503 (5)	C25-C30 C25-C30 C26-C27 C27 C28		1.367 (8) 1.393 (7)
2264 observed reflections $[I > 3.0\sigma(I)]$	reflections intensity variation: < 2%	C11—C12 C13—N14		1.505 (5) 1.533 (6) 1.137 (7)	C27C28 C28C29 C29C30		1.36 (1) 1.35 (1) 1.41 (1)
Refinement		FC1C6 FC1C2 C2C1C6		119.6 (5) 117.6 (5) 122.8 (5)	C10—N15- C16—N15- N15—C16-	–C16 –C20 –C17	113.6 (3) 109.5 (4) 111.6 (3)
Refinement on F R = 0.0293	Atomic scattering factors from International Tables	C1C2C3 C2C3C4 C3C4C7		117.8 (6) 120.9 (6) 120.2 (4)	C16C17 C16C17 C18C17-	C21 C18 C21	111.7 (4) 110.7 (4) 112.7 (4)
S = 0.91 2264 reflections	Jor X-ray Crystallography (1974, Vol. IV, Tables 2 2B and 2 3 1)	C3-C4-C5 C5-C4-C7 C4-C5-C6		117.3 (5) 122.5 (4) 122.2 (5)	C17C18 C17C18 C17C18	C25 C22 C19	111.3 (4) 109.6 (4) 109.0 (4)
289 parameters H-atom parameters not	Absolute configuration: the Bijvoet coefficient was	C1C6C5 C4C7C1 C4C7C1	3 2	118.9 (6) 108.8 (4) 112.6 (4)	C22C18 C19C18 C19C18	C25 C25 C22	104.0 (4) 112.4 (4) 110.4 (4)
refined $w = 1/[\sigma^2(F) + 0.00100F^2]$ $(\Delta/\pi) = 0.001$	0.961(1) and exactly 1 for the 227 and 13 most significant Bijvoet pairs, respectively	C4C7C8 C12C7C C8C7C1	13 3	111.6 (4) 107.8 (4) 107.4 (4)	C18C19 N15C20 C18C22	C20 C19 O24	112.3 (4) 111.1 (4) 124.2 (5)
$\Delta \rho_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3}$		C8—C7—C1 C7—C8—C9 C8—C9—C1	2	108.5 (4) 112.4 (4) 110.6 (3)	C18C22- O23C22- C18C25-	023 024 C30	112.5 (4) 123.3 (5) 119.4 (5)
		C9-C10-N	15	110.7 (4)	C18C25	C26	122.2 (5)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Ζ	U_{eq}
Br	0.49207 (9)	-0.03452 (2)	0.64381 (3)	0.0559 (2)
F	0.9975 (9)	0.4465 (1)	0.7362 (2)	0.095 (1)
C1	1.011 (1)	0.3876 (2)	0.7092 (3)	0.062 (2)
C2	0.841 (1)	0.3618 (3)	0.6786 (4)	0.082 (3)
C3	0.8543 (8)	0.3004 (3)	0.6499 (4)	0.071 (2)
C4	1.0346 (7)	0.2677 (2)	0.6542 (3)	0.049 (2)
C5	1.1981 (9)	0.2970 (3)	0.6880 (3)	0.060 (2)
C6	1.187 (1)	0.3567 (3)	0.7160 (4)	0.066 (2)
C7	1.0477 (6)	0.2021 (2)	0.6207 (3)	0.044 (2)
C8	0.9524 (7)	0.1537 (2)	0.6784 (3)	0.049 (2)
C9	0.9601 (7)	0.0875 (2)	0.6451 (3)	0.047 (2)
C10	0.8573 (7)	0.0845 (2)	0.5637 (3)	0.044 (2)
C11	0.9538 (8)	0.1300 (2)	0.5062 (3)	0.048 (2)
C12	0.9429 (7)	0.1958 (2)	0.5394 (3)	0.052 (2)
C13	1.2642 (9)	0.1855 (2)	0.6104 (3)	0.057 (2)
N14	1.4288 (7)	0.1725 (2)	0.5991 (3)	0.085 (2)
N15	0.8541 (6)	0.0193 (2)	0.5330 (2)	0.044 (1)
C16	1.0629 (7)	-0.0077 (2)	0.5198 (3)	0.048 (2)
C17	1.0524 (7)	-0.0762 (2)	0.4980 (3)	0.049 (2)
C18	0.9242 (7)	-0.0857 (2)	0.4228 (3)	0.046 (2)
C19	0.7142 (7)	-0.0564 (2)	0.4353 (3)	0.047 (2)
C20	0.7282 (8)	0.0113 (2)	0.4589 (3)	0.053 (2)
C21	0.979 (1)	-0.1156 (2)	0.5676 (3)	0.059 (2)
C22	1.0319 (9)	-0.0557 (2)	0.3514 (3)	0.062 (2)
O23	0.9088 (6)	-0.0454 (2)	0.2925 (2)	0.086 (2)
024	1.2089 (6)	-0.0450 (3)	0.3487 (3)	0.120 (3)
C25	0.9105 (8)	-0.1550 (2)	0.4004 (3)	0.051 (2)
C26	0.7291 (9)	-0.1830 (3)	0.3811 (3)	0.063 (2)

C7C8	1.563 (6)	C19—C20	1.520 (6)
C7C12	1.543 (6)	C22023	1.302 (6)
C7C13	1.482 (7)	C22024	1.190 (7)
C8C9	1.538 (6)	C25-C26	1.380 (8)
C9C10	1.535 (6)	C25-C30	1,367 (8)
C10-C11	1.520 (6)	C26C27	1.393 (7)
C10	1.503 (5)	C27C28	1.36 (1)
C11-C12	1.533 (6)	C28C29	1.35 (1)
C13-N14	1.137 (7)	C29—C30	1.41 (1)
FC1C6	119.6 (5)	C10-N15-C16	113.6 (3)
FC1C2	117.6 (5)	C16-N15-C20	109.5 (4)
C2C1C6	122.8 (5)	N15-C16-C17	111.6 (3)
C1C2C3	117.8 (6)	C16C17C21	111.7 (4)
C2C3C4	120.9 (6)	C16C17C18	110.7 (4)
C3-C4-C7	120.2 (4)	C18-C17-C21	112.7 (4)
C3C4C5	117.3 (5)	C17-C18-C25	111.3 (4)
C5-C4-C7	122.5 (4)	C17C18C22	109.6 (4)
C4C5C6	122.2 (5)	C17-C18-C19	109.0 (4)
C1-C6-C5	118.9 (6)	C22-C18-C25	104.0 (4)
C4C13	108.8 (4)	C19-C18-C25	112.4 (4)
C4C12	112.6 (4)	C19-C18-C22	110.4 (4)
C4C7C8	111.6 (4)	C18C19C20	112.3 (4)
C12C7C13	107.8 (4)	N15-C20-C19	111.1 (4)
C8-C7-C13	107.4 (4)	C18-C22-O24	124.2 (5)
C8C7C12	108.5 (4)	C18-C22-O23	112.5 (4)
C7C8C9	112.4 (4)	O23-C22-O24	123.3 (5)
C8C9C10	110.6 (3)	C18C25C30	119.4 (5)
C9-C10-N15	110.7 (4)	C18C25C26	122.2 (5)
C9-C10-C11	111.1 (4)	C26C25C30	118.4 (5)
C11-C10-N15	113.1 (4)	C25-C26-C27	120.5 (6)
C10-C11-C12	110.3 (4)	C26C27C28	120.7 (6)
C7C12C11	112.7 (4)	C27C28C29	119.2 (6)
C7-C13-N14	177.1 (6)	C28C29C30	120.8 (7)
C10-N15-C20	113.6 (3)	C25—C30—C29	120.2 (6)
C3-C4-C7-C8	-78.9 (6)	C11-C10-N15-C20	-63.0 (5)
C3-C4-C7-C12	43.4 (6)	C10-N15-C16-C17	173.4 (4)
C3-C4-C7-C13	162.8 (5)	N15-C16-C17-C21	-68.2 (5)
C4C7C8C9	178.9 (4)	C16-C17-C18-C22	66.0 (5)
CI3-C/-CI2-CI1	60.7 (5)	C16-C17-C18-C25	-179.5 (4)
C8-C9-C10-N15	-176.8 (3)	C17-C18-C25-C26	132.9 (5)
C9-C10-N15-C16	-62.6 (5)	C17C18C22O24	21.9 (7)
C9-CI0-NI5-C20	171.5 (4)	C22C18C25C26	-109.1 (5)
CIICI0N15C16	62.9 (5)	C25-C18-C22-O23	80.4 (5)

Data were collected using a variable scan speed with a scan range of 1° below $K\alpha_1$ to 1° above $K\alpha_2$. The ratio of total background time to scan time was unity. The structure was solved by a combination of Patterson and direct methods for difference structures and was refined using a full-matrix least-squares method. H atoms were calculated at geometrical positions except those of the methyl and hydroxyl groups, which were obtained from a difference Fourier synthesis. The absolute configuration was determined by calculating the Bijvoet coefficient according to a selection procedure of Beurskens, Noordik & Beurskens (1980). Data collection and cell refinement: P21 Diffractometer Program (Syntex, 1975). Data reduction: REDU4 (Stoe & Cie, 1992). Program(s) used to solve structure: DIRDIF (Beurskens et al., 1981). Program(s) used to refine structure: NRCVAX (Gabe, Le Page,

Charland, Lee & White, 1989). Molecular graphics: *PLUTO* (Motherwell & Clegg, 1978). Software used to prepare material for publication: *PARST* (Nardelli, 1983).

The authors thank Dr J. Tollenaere of Janssen Research Foundation (Beerse, Belgium) for providing the title compound.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1090). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, G., Noordik, J. H. & Beurskens, P. T. (1980). Cryst. Struct. Commun. 9, 23-28.
- Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., van den Hark, Th. E. M., Prick, P. A., Noordik, J. H., Beurskens, G. & Parthasarathi, V. (1981). *DIRDIF*. Technical Report 1981/2. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Stoe & Cie (1992). REDU4. Data Reduction Program. Version 7.03. Stoe & Cie, Darmstadt, Germany.
- Stokbroekx, R. A., Luyckx, M. J. M., Willems, J. J. M., Janssen, M., Bracke, J. O. M. M., Joosen, R. L. P. & Van Wauwe, J. P. (1986). Drug Develop. Res. 8, 87–93.
- Syntex (1975). P21 Diffractometer Program. Version 1. Syntex Analytical Instruments, Cupertino, California, USA.

Acta Cryst. (1994). C50, 1503-1505

Methyl 5-Cyano-1-[2-(methoxycarbonyl)phenyl]-4,5-dihydro-3-pyrazolecarboxylate

TULLIO PILATI AND GIANLUIGI CASALONE

CNR - Centro per lo Studio delle Relazioni, fra Struttura e Reattività Chimica, Via Golgi 19, 20133 Milano, Italy

(Received 8 February 1994; accepted 21 March 1994)

Abstract

The title compound, $C_{14}H_{13}N_3O_4$, has two molecules in the asymmetric unit which have quite different geometries, in spite of the absence of strong intramolecular contacts. This is a result of the flexibility of the 4,5dihydropyrazole ring. Similar compounds which show the same ring variability can be found in the literature.

Comment

Continuing a series of 1,3-dipolar cycloaddition reactions, Garanti (1993) added the chlorohydrazone (1) and Ag_2CO_3 (to generate the corresponding nitrilimmine) to acrylonitrile in boiling acetonitrile, obtaining the title compound (2).

The present work confirms the expected conformation of the reaction product. There are two crystallographically independent molecules in the asymmetric unit of (2) and there is no particular relation between them. Fig. 1 shows molecule A, with the numbering scheme of the heavy atoms. The same numbering is applied to molecule B. The intermolecular packing interactions are not particularly relevant. In fact only three weak hydrogen bonds are present: $C18A \cdots O13B^{i}$ = 3.232 (3), H181A···O13Bⁱ = 2.52 (3) Å and C18A— $H181A \cdots O13B^{i} = 129 (3)^{\circ}; C4A \cdots O17B^{ii} = 3.328 (3),$ $H42A \cdots O17B^{ii} = 2.62 (3) \text{ Å and } C4A - H42A \cdots O17B^{ii}$ = $128 (2)^{\circ}$; C4B···O17Aⁱⁱⁱ = 3.485 (3), H41B···O17Aⁱⁱⁱ = 2.67 (3) Å and C4B—H41B····O17 A^{iii} = 142 (2)° [symmetry codes: (i) 1 - x, -y, 1-z; (ii) -x, 1-y, 1-z; (iii) -x, -y, 1-z]. Nevertheless, the two molecules are quite different, as can be seen from Fig. 2.

The main difference between the molecules is in the conformation of the heterocycle (N1, N2, C3, C4, C5), which is practically planar in molecule A [total puckering amplitude $Q_t = 0.029$ (2) Å (Cremer &

Fig. 1. ORTEPII (Johnson, 1976) drawing of molecule A with the numbering scheme of the heavy atoms, the same numbering was applied to molecule B. Displacement ellipsoids are drawn at the 20% probability level; H atoms are not to scale.

Acta Crystallographica Section C ISSN 0108-2701 ©1994